12 C(3 He, 3 He) 1971St22,1977Bu03 History Author Type Literature Cutoff Date Citation J. H. Kelley, J. E. Purcell and C. G. Sheu NP A968, 71 (2017) 1-Jan-2017 1966Sc12: 12 C(3 He, 3 He) E=2.0-6.1 MeV, measured σ (E, θ). 1966Sc22: ${}^{12}\text{C}({}^{3}\text{He}, {}^{3}\text{He})$ E=8.5-10.0 MeV, measured $\sigma(\text{E},\theta)$. 1968Fo06: 12 C(3 He, 3 He),(3 He, 3 He') E=12-19 MeV, measured σ (E, θ), σ (E,E(3 He'), θ). Deduced optical model parameters. 1968La19: 12 C(3 He, 3 He)E=5.29-5.50 MeV, measured σ (E,E_P, θ). Deduced optical potentials, level overlap parameter. 1968We15,1969We03,1971Ja01: 12 C(3 He, 3 He) E=2.0-8.0 MeV, measured σ (E,E(3 He), θ). 1969Ar08: 12 C(3 He, 3 He) E=36 MeV, measured $\sigma(\theta)$. Deduced optical model parameters. 1969En03: ¹²C(³He, ³He) E=31.6 MeV, measured polarization P. Deduced optical model spin-orbit potential. 1969Zu02: 12 C(3 He, 3 He) E=15 MeV, measured $\sigma(\theta)$. 1970Mc10,1972Mc01: $^{12}\text{C}(^{3}\text{He},^{3}\text{He})$ E=18.20 MeV, measured P(θ), $\sigma(\theta)$. Deduced optical model parameters, 1970Sc23: 12 C(3 He, 3 He) E=11.0 MeV, measured $\sigma(\theta)$. Deduced optical-model parameters. 1971St22: 12 C(3 He, 3 He'), E=19,19.5,20 MeV; measured σ (E_D'), σ (3 He'). 12 C deduced energies of 1st, 2nd excited states. 1973Fu03: 12 C(3 He, 3 He),(3 He, 3 He') E=24.0,29.2,34.7,39.6 MeV, measured σ (E(3 He'), θ). Deduced optical model parameters. 12 C 1973Wi07: 12 C(3 He, 3 He) E=217 MeV, measured σ (E(3 He), θ). Deduced optical model parameters. 1975Bo06: ¹²C(³He, ³He) E=28 MeV, measured polarization angular distribution. Deduced optical model spin-orbit potential. 1976Ma26: ${}^{12}\text{C}({}^{3}\text{He}, {}^{3}\text{He}) \text{ E}=18.20.22.24.5 \text{ MeV. measured } \sigma(\theta)$. 1976Ta12: 12 C(3 He, 3 He)E=82.1 MeV, measured $\sigma(\theta)$. Deduced optical potential parameters. 12 C(3 He, 3 He') E=81.2 MeV, measured $\sigma(\theta)$. ¹²C levels deduced β . 1977Ba05: 12 C(3 He, 3 He) E=39.1 MeV, measured $\sigma(\theta)$. Deduced optical model parameters. 1977Bu03: 12 C(3 He, 3 He'), E=130 MeV; measured σ (E(3 He'), θ). 12 C deduced giant resonances, deformation length. 1975Bu11,1977Ka25: 12 C(pol. 3 He, 3 He) E=20.5-33 MeV, measured $\sigma(\theta, E)$, A(θ, E). Deduced optical model potential, phase shifts, β_2 . 1979Go07: 12 C(3 He, 3 He) E=44.04 MeV, measured $\sigma(\theta)$. 1980Hy02: 12 C(3 He, 3 He) E=119.0 MeV, measured $\sigma(\theta)$. Deduced optical model parameters. 1980Tr02: 12 C(3 He, 3 He) E=41 MeV, measured $\sigma(\theta)$. 1982A114: 12 C(3 He, 3 He) E=40.9 MeV, measured $\sigma(\theta)$. Deduced absorptive term characteristics. 1991Go25: 12 C(3 He, 3 He) E=98 MeV, measured $\sigma(\theta)$. Deduced model parameters. 1992Ad06: 12 C(3 He, 3 He) E=50,60 MeV, measured $\sigma(\theta)$. Deduced model parameters. 12 C levels deduced multipole deformation parameters. Optical model and DWBA anaylses. 1995Da08,1995Da21: ${}^{12}\text{C}({}^{3}\text{He}, {}^{3}\text{He}), ({}^{3}\text{He}, {}^{3}\text{He}')$ E=98 MeV, measured $\sigma(\theta)$. Deduced nuclear rainbow effect evidence, model parameters. 1995Ya06: 12 C(3 He, 3 He) E=450 MeV, measured $\sigma(\theta)$. Deduced optical potential parameters. 1997Kh07: 12 C(3 He, 3 He) E=27.4-217 MeV, analyzed $\sigma(\theta)$. Deduced parameters, reaction σ . 2001Ku20: 12 C(3 He, 3 He) E=17-20 MeV/nucleon, analyzed $\sigma(\theta)$. Deduced S-matrix parameters. 2003Ka24: 12 C(3 He, 3 He) E=443 MeV, measured $\sigma(\theta)$. 2009Da22: 12 C(3 He, 3 He),(3 He, 3 He') E=34.7,50,60,72,82 MeV, analyzed elastic and inelastic scattering cross section and $\sigma(\theta)$ data using diffraction model of scattering. Deduced nuclear rms radii for excited states in ¹²C. 2013Ha01: XUNDL dataset compiled by TUNL, 2013. Beams of 50.5 and 60 MeV ³He ions from the Almaty-Kazakhstan U-150M cyclotron impinged on a 30 μg/cm² and the angular distribution of scattered ions was measured for $15^{\circ} < \theta_{c.m} < 170^{\circ}$ by a set of four moveable ΔE -E Si telescopes. Angular distributions were analyzed using a coupled channels method and the location of the Airy minimum was deduced. Analysis of scattering to the Hoyle state suggests it is a 3α particle condensate with a large radius of dilute matter. 2014Wh02: XUNDL dataset compiled by TUNL, 2014. Unbound ¹²C states were studied using 46 MeV ³He ions, from the Birmingham MC40 cyclotron, that impinged on a 300 μg/cm² carbon target. The scattered 3 He ejectiles were detected using a position sensitive Δ E-E Si-strip detector telescope that was placed 9.8 cm from the target at $\theta_{lab}=-32.5^{\circ}$. Additional details on the reaction were determined by measurement of α -particles from the breakup of recoiling 12 C. The α -particles were detected in an array of 2 Δ E-E Si-strip telescopes placed at θ_{lab} =27.5° and 57.5°. The data were analyzed with a kinematic gate that required a sequential decay via ${}^{12}\text{C} \rightarrow {}^{8}\text{Be}_{\text{g.s.}} + \alpha_0$. This implies only states with ## ¹²C(³He, ³He) **1971St22,1977Bu03** (continued) natural parity were selected. Discussion on backgrounds and contaminant reactions, such as $^{12}\text{C}(^3\text{He}, ^7\text{Be} \rightarrow ^3\text{He} + \alpha)$ and $^{12}\text{C}(^3\text{He}, ^{11}\text{C} \rightarrow ^8\text{Be} + ^3\text{He})$ are given in the text. The known states at E_x =7.65, 9.64, 10.84 and 14.08 were easily resolved with an experimental resolution of \approx 530 keV. A variety of states up to E_x =25.1 MeV are observed and compared with literature values. By comparing the 3 He "singles" rate with the $^{12}C \rightarrow ^8Be_{g.s.} + \alpha_0$ data, the authors estimated the $\Gamma_{\alpha 0}/\Gamma$ branching ratios for several states. 1980Le25: Unconfirmed $J^{\pi}=0^{+}$ states are reported at 9.25 MeV 20 ($\Gamma=1.8$ MeV 2) and 20.3 MeV 2 ($\Gamma=1.1$ MeV 2). ## ¹²C Levels | E(level) | \mathbf{J}^{π} | Γ | L | Comments | |--------------------------|--------------------|--------------------|---|---| | 0 | | | 0 | | | 4442.2 15 | | | 2 | E(level): From (1971St22). | | 7655.9 25 | | | | E(level): From (1971St22: includes (p,p')). | | | | | | $R_{r.m.s.} \approx 2.94 \text{ fm } (2008\text{De}35).$ | | 9.6×10^3 | | | 3 | | | 10.83×10^3 | | | | | | 10.84×10^3 | | | | | | 12.7×10^3 | | | 0 | | | 14.08×10^3 | | | | $\Gamma \alpha_0 / \Gamma = 0.20 \ IO \ (2014 \text{Wh} 02).$ | | 15.11×10^3 | | | 0 | T=1 | | | | | | $\Gamma \alpha_0 / \Gamma < 0.08 \ (2014 \text{Wh} 02).$ | | $15.2 \times 10^3 \ 3$ | | 1.8 MeV 3 | 2 | E(level),Γ: From (1977Bu03). | | 16.11×10^3 | | | 2 | T=1 | | | | | | $\Gamma \alpha_0 / \Gamma = 0.18 \ IO \ (2014 \text{Wh} 02).$ | | 16.58×10^3 | | | | T=1 | | $18.4 \times 10^3 6$ | 3- | 0.4 MeV 1 | 2 | T=1 | | | | | | E(level),Γ: From (1977Bu03). | | | | | | $\Gamma \alpha_0 / \Gamma = 0.25 \ 10 \ (2014 \text{Wh} 02).$ | | 10.00 103 15 | | 0 = 0 1 6 77 7 5 | _ | J^{π} : From (2014Wh02). | | $18.90 \times 10^3 \ 15$ | | 0.70 MeV <i>15</i> | 2 | T=1 | | 10.50, 103.6 | | | | E(level), Γ : From (1977Bu03). | | $19.58 \times 10^3 \ 6$ | | | | T=1 | | | | | | E(level),Γ: From (1969Ba06).
$\Gamma \alpha_0/\Gamma = 0.21 \ Io \ (2014Wh02).$ | | 21.30×10 ³ 15 | | 1.4 MeV 2 | 2 | $E(\text{level})$, Γ : From (1977Bu03). | | 21.30×10 13 | | 1.4 MEV 2 | 2 | Possibly unresolved states with Γ =1.4 MeV 2 and Γ =0.43 MeV 8. | | $22.2 \times 10^3 \ 3$ | | <0.7 MeV | | E(level): From (2014Wh02). This state can likely be associated with the E_x =22.4 | | 22.2×10 3 | | <0.7 IVIC V | | MeV J^{π} =5 ⁻ state that was populated in 12 C(α ,3 α) (2014Ma37). | | $23.5 \times 10^3 \ 2$ | | 0.6 MeV 2 | 2 | $E(\text{level})$, Γ : From (1977Bu03). | | $25.1 \times 10^3 \ 3$ | | <0.8 MeV | 4 | E(level); From (2014Wh02). | | $25.9 \times 10^3 \ 3$ | | 2.2 MeV 3 | 2 | E(level), \(\text{From (1977Bu03)}. \) | | $28.8 \times 10^3 \ 4$ | | 2.7 MeV 4 | 2 | E(level), T: From (1977Bu03). E(level), T: From (1977Bu03). | | 20.0/10 7 | | 2.7 IVIC V 7 | 4 | L(16761),1 . 1 10111 (17/7 DU03). |